Myth: El Nino/La Nina transitions caused by wind

This 2-D heat map, from Jialin Lin’s research group at The Ohio State University, shows the eastward propagation of the ocean subsurface wave leading to switch from La Niña to El Niño.

The above is from an informative OSU press release from last year titled Solving climate’s toughest questions, one challenge at a time. The following quotes are from that page, bold emphasis mine.

Jialin Lin, associate professor of geography, has spent the last two decades tackling those challenges, and in the past two years, he’s had breakthroughs in answering two of forecasting’s most pernicious questions: predicting the shift between El Niño and La Niña and predicting which hurricanes will rapidly intensify.

Now, he’s turning his attention to creating more accurate models predicting global warming and its impacts, leading an international team of 40 climate experts to create a new book identifying the highest-priority research questions for the next 30-50 years.

… still to be published

Lin set out to create a model that could accurately identify ENSO shifts by testing — and subsequently ruling out — all the theories and possibilities earlier researchers had proposed. Then, Lin realized current models only considered surface temperatures, and he decided to dive deeper.

He downloaded 140 years of deep-ocean temperature data, analyzed them and made a breakthrough discovery.

“After 20 years of research, I finally found that the shift was caused by an ocean wave 100 to 200 meters down in the deep ocean,” Lin said, whose research was published in a Nature journal. “The propagation of this wave from the western Pacific to the eastern Pacific generates the switch from La Niña to El Niño.”

The wave repeatedly appeared two years before an El Niño event developed, but Lin went one step further to explain what generated the wave and discovered it was caused by the moon’s tidal gravitational force.

“The tidal force is even easier to predict,” Lin said. “That will widen the possibility for an even longer lead of prediction. Now you can predict not only for two years before, but 10 years before.”

Essentially, the idea is that these subsurface waves can in no way be caused by surface wind as the latter only are observed later (likely as an after-effect of the sub-surface thermocline nearing the surface and thus modifying the atmospheric pressure gradient). This counters the long-standing belief that ENSO transitions occur as a result of prevailing wind shifts.

The other part of the article concerns correlating hurricane intensification is also interesting.

p.s. It’s all tides : Climatic Drivers of Extreme Sea Level Events Along the
Coastline of Western Australia

Information Theory in Earth Science: Been there, done that

Following up from this post, there is a recent sequence of articles in an AGU journal on Water Resources Research under the heading: “Debates: Does Information Theory Provide a New Paradigm for Earth Science?”

By anticipating all these ideas, you can find plenty of examples and derivations (with many centered on the ideas of Maximum Entropy) in our book Mathematical Geoenergy.

Here is an excerpt from the “Emerging concepts” entry, which indirectly addresses negative entropy:

“While dynamical system theories have a long history in mathematics and physics and diverse applications to the hydrological sciences (e.g., Sangoyomi et al., 1996; Sivakumar, 2000; Rodriguez-Iturbe et al., 1989, 1991), their treatment of information has remained probabilistic akin to what is done in classical thermodynamics and statistics. In fact, the dynamical system theories treated entropy production as exponential uncertainty growth associated with stochastic perturbation of a deterministic system along unstable directions (where neighboring states grow exponentially apart), a notion linked to deterministic chaos. Therefore, while the kinematic geometry of a system was deemed deterministic, entropy (and information) remained inherently probabilistic. This led to the misconception that entropy could only exist in stochastically perturbed systems but not in deterministic systems without such perturbations, thereby violating the physical thermodynamic fact that entropy is being produced in nature irrespective of how we model it.

In that sense, classical dynamical system theories and their treatments of entropy and information were essentially the same as those in classical statistical mechanics. Therefore, the vast literature on dynamical systems, including applications to the Earth sciences, was never able to address information in ways going beyond the classical probabilistic paradigm.”

That is, there are likely many earth system behaviors that are highly ordered, but the complexity and non-linearity of their mechanisms makes them appear stochastic or chaotic (high positive entropy) yet the reality is that they are just a complicated deterministic model (negative entropy). We just aren’t looking hard enough to discover the underlying patterns on most of this stuff.

An excerpt from the Occam’s Razor entry, lifts from my cite of Gell-Mann

“Science and data compression have the same objective: discovery of patterns in (observed) data, in order to describe them in a compact form. In the case of science, we call this process of compression “explaining observed data.” The proposed or resulting compact form is often referred to as “hypothesis,” “theory,” or “law,” which can then be used to predict new observations. There is a strong parallel between the scientific method and the theory behind data compression. The field of algorithmic information theory (AIT) defines the complexity of data as its information content. This is formalized as the size (file length in bits) of its minimal description in the form of the shortest computer program that can produce the data. Although complexity can have many different meanings in different contexts (Gell-Mann, 1995), the AIT definition is particularly useful for quantifying parsimony of models and its role in science. “

Parsimony of models is a measure of negative entropy

“Wobbling” Moon trending on Twitter

Twitter trending topic

This NASA press release has received mainstream news attention.

The 18.6 year nodal cycle will generate higher tides that will exaggerate sea-level rise due to climate change.

Yahoo news item:

https://news.yahoo.com/lunar-orbit-apos-wobble-apos-173042717.html

So this is more-or-less a known behavior, but hopefully it raises awareness to the other work relating lunar forcing to ENSO, QBO, and the Chandler wobble.

Cited paper

Thompson, P.R., Widlansky, M.J., Hamlington, B.D. et al. Rapid increases and extreme months in projections of United States high-tide flooding. Nat. Clim. Chang. 11, 584–590 (2021). https://doi.org/10.1038/s41558-021-01077-8

Inverting non-autonomous functions

This is an algorithm based on minimum entropy (i.e. negative entropy) considerations which is essentially an offshoot of this paper Entropic Complexity Measured in Context Switching.

The objective is to apply negative entropy to find an optimal solution to a deterministically ordered pattern. To start, let us contrast the behavior of autonomous vs non-autonomous differential equations. One way to think about the distinction is that the transfer function for non-autonomous only depends on the presenting input. Thus, it acts like an op-amp with infinite bandwidth. Or below saturation it gives perfectly linear amplification, so that as shown on the graph to the right, the x-axis input produces an amplified y-axis output as long as the input is within reasonable limits.

Continue reading

Low #DOF ENSO Model

Given two models of a physical behavior, the “better” model has the highest correlation (or lowest error) to the data and the lowest number of degrees of freedom (#DOF) in terms of tunable parameters. This ratio CC/#DOF of correlation coefficient over DOF is routinely used in automated symbolic regression algorithms and for scoring of online programming contests. A balance between a good error metric and a low complexity score is often referred to as a Pareto frontier.

So for modeling ENSO, the challenge is to fit the quasi-periodic NINO34 time-series with a minimal number of tunable parameters. For a 140 year fitting interval (1880-1920), a naive Fourier series fit could easily take 50-100 sine waves of varying frequencies, amplitudes, and phase to match a low-pass filtered version of the data (any high-frequency components may take many more). However that is horribly complex model and obviously prone to over-fitting. Obviously we need to apply some physics to reduce the #DOF.

Since we know that ENSO is essentially a model of equatorial fluid dynamics in response to a tidal forcing, all that is needed is the gravitational potential along the equator. The paper by Na [1] has software for computing the orbital dynamics of the moon (i.e. lunar ephemerides) and a 1st-order approximation for tidal potential:

The software contains well over 100 sinusoidal terms (each consisting of amplitude, frequency, and phase) to internally model the lunar orbit precisely. Thus, that many DOF are removed, with a corresponding huge reduction in complexity score for any reasonable fit. So instead of a huge set of factors to manipulate (as with many detailed harmonic tidal analyses), what one is given is a range (r = R) and a declination ( ψ=delta) time-series. These are combined in a manner following the figure from Na shown above, essentially adjusting the amplitudes of R and delta while introducing an additional tangential or tractional projection of delta (sin instead of cos). The latter is important as described in NOAA’s tide producing forces page.

Although I roughly calibrated this earlier [2] via NASA’s HORIZONS ephemerides page (input parameters shown on the right), the Na software allows better flexibility in use. The two calculations essentially give identical outputs and independent verification that the numbers are as expected.

As this post is already getting too long, this is the result of doing a Laplace’s Tidal Equation fit (adding a few more DOF), demonstrating that the limited #DOF prevents over-fitting on a short training interval while cross-validating outside of this band.

or this

This low complexity and high accuracy solution would win ANY competition, including the competition for best seasonal prediction with a measly prize of 15,000 Swiss francs [3]. A good ENSO model is worth billions of $$ given the amount it will save in agricultural planning and its potential for mitigation of human suffering in predicting the timing of climate extremes.

REFERENCES

[1] Na, S.-H. Chapter 19 – Prediction of Earth tide. in Basics of Computational Geophysics (eds. Samui, P., Dixon, B. & Tien Bui, D.) 351–372 (Elsevier, 2021). doi:10.1016/B978-0-12-820513-6.00022-9.

[2] Pukite, P.R. et al “Ephemeris calibration of Laplace’s tidal equation model for ENSO” AGU Fall Meeting, 2018. doi:10.1002/essoar.10500568.1

[3] 1 CHF ~ $1 so 15K = chump change.


Added: High resolution power spectra of ENSO forcing
see link

Review: Modeling of ocean equatorial currents in the phase of El Niño and La Niña

https://www.sciencedirect.com/science/article/abs/pii/S037702652100018X#!

The equatorial zone acts as a waveguide. As highlights they list the following bullet-points, taking advantage that the Coriolis effect at the equator vanishes or cancels.

This is a critical assertion, since — as shown in Mathematical Geoenergy –the Chandler wobble (a nutational oscillation) is forced by tides, then transitively so is the El Nino. So when the authors state the consequence is of both nutation and a gravity influence, it is actually the gravity influence of the moon and sun (and slightly Jupiter) that is the root cause.

The article has several equations that claim analytical solutions, but the generated PDF format has apparently not rendered the markup correctly. Many “+” signs are missing from equations. I have seen this issue before when I have tried to generate PDF pages from a markup doc, and assume that is what is happening. Assume the hard-copy version is OK so may have to go to the library to retrieve it, or perhaps ask the authors for a hard-copy.

main author:

Sergey А. Arsen’yev

Dept. of Earth and Planetary Physics of Schmidt’s Institute of the Earth’s Physics, Russian Academy of Sciences, 10 Bolshaya Gruzinskaya, Moscow, 123995, Russia

Arsy7@mail.ru

Nonlinear Generation of Power Spectrum : ENSO

Something I learned early on in my research career is that complicated frequency spectra can be generated from simple repeating structures. Consider the spatial frequency spectra produced as a diffraction pattern produced from a crystal lattice. Below is a reflected electron diffraction pattern of a reconstructed hexagonally reconstructed surface of a silicon (Si) single crystal with a lead (Pb) adlayer ( (a) and (b) are different alignments of the beam direction with respect to the lattice). Suffice to say, there is enough information in the patterns to be able to reverse engineer the structure of the surface as (c).

from link

Now consider the ENSO pattern. At first glance, neither the time-series signal nor the Fourier series power spectra appear to be produced by anything periodically regular. Even so, let’s assume that the underlying pattern is tidally regular, being comprised of the expected fortnightly 13.66 day tropical/synodic cycle and the monthly 27.55 day anomalistic cycle synchronized by an annual impulse. Then the forcing power spectrum of f(t) looks like the RED trace on the left-side of the figure below, F(ω). Clearly that is not enough of a frequency spectra (a few delta spikes) necessary to make up the empirically calculated Fourier series for the ENSO data comprising ~40 intricately placed peaks between 0 and 1 cycles/year in BLUE.

click to expand

Yet, if we modulate that with an Laplace’s Tidal Equation solution functional g(f(t)) that has a G(ω) as in the yellow inset above — a cyclic modulation of amplitudes where g(x) is described by two distinct sine-waves — then the complete ENSO spectra is fleshed out in BLACK in the figure above. The effective g(x) is shown in the figure below, where a slower modulation is superimposed over a faster modulation.

So essentially what this is suggesting is that a few tidal factors modulated by two sinusoids produces enough spectral detail to easily account for the ~40 peaks in the ENSO power spectra. It can do this because a modulating sinusoid is an efficient harmonics and cross-harmonics generator, as the Taylor’s series of a sinusoid contains an effectively infinite number of power terms.

To see this process in action, consider the following three figures, which features a slider that allows one to get an intuitive feel for how the LTE modulation adds richness via harmonics in the power spectra.

  1. Start with a mild LTE modulation and start to increase it as in the figure below. A few harmonics begin to emerge as satellites surrounding the forcing harmonics in RED.
drag slider right for less modulation and to the left for more modulation

2. Next, increase the LTE modulation so that it models the slower sinusoid — more harmonics emerge

3. Then add the faster sinusoid, to fully populate the empirically observed ENSO spectral peaks (and matching the time series).

It appears as if by magic, but this is the power of non-linear harmonic generation. Note that the peak labeled AB amongst others is derived from the original A and B as complicated satellite-cross terms, which can be accounted for by expanding all of the terms in the Taylor’s series of the sinusoids. This can be done with some difficulty, or left as is when doing the fit via solver software.

To complete the circle, it’s likely that being exposed to mind-blowing Fourier series early on makes Fourier analysis of climate data less intimidating, as one can apply all the tricks-of-the-trade, which, alas, are considered routine in other disciplines.


Individual charts

https://imagizer.imageshack.com/img922/7013/VRro0m.png




 


Modern Meteorology

This is what amounts to forecast meteorology — a seasoned weatherman will look at the current charts and try to interpret them based on patterns that have been associated with previous observations. They appear to have equal powers of memory recall, pattern matching, and the art of the bluff.

I don’t do that kind of stuff and don’t think I ever will.

If this comes out of a human mind, then that same information can be fed into a knowledgebase and either a backward or forward-chained inference engine could make similar assertions.

And that explains why I don’t do it — a machine should be able to do it better.


What makes an explanation good enough? by Santa Fe Institute

Plausibility and parsimony are the 2P’s of building a convincing argument for a scientific model. First one has to convince someone that the model is built on a plausible premise, and secondly that the premise is simpler and more parsimonious with the data that any other model offered. As physics models are not provable in the sense of math models, the model that wins is always based on a comparison to all other models. Annotated from  DOI: 10.1016/j.tics.2020.09.013

note: https://andthentheresphysics.wordpress.com/2018/01/13/a-little-bit-of-sociology-of-science/#comment-110013

Chandler Wobble Forcing

Amazing finding from Alex’s group at NASA JPL

What’s also predictable is that the JPL team probably have a better handle of what causes the wobble on Mars than we have on what causes the Chandler wobble (CW) here on Earth. Such is the case when comparing a fresh model against a stale model based on an early consensus that becomes hard to shake with the passage of time.

Of course, we have our own parsimoniously plausible model of the Earth’s Chandler wobble (described in Chapter 13), that only gets further substantiated over time.

The latest refinement to the geoenergy model is the isolation of Chandler wobble spectral peaks related to the asymmetry of the northern node lunar torque relative to the southern node lunar torque.

Continue reading