The SAO and Annual Disturbances

In Chapter 11 of the book Mathematical GeoEnergy, we model the QBO of equatorial stratospheric winds, but only touch on the related cycle at even higher altitudes, the semi-annual oscillation (SAO). The figure at the top of a recent post geometrically explains the difference between SAO and QBO — the basic idea is that the SAO follows the solar tide and not the lunar tide because of a lower atmospheric density at higher altitudes. Thus, the heat-based solar tide overrides the gravitational lunar+solar tide and the resulting oscillation is primarily a harmonic of the annual cycle.

Figure 1 : The SAO modeled with the GEM software fit to 1 hPa data along the equator
Continue reading

Double-Sideband Suppressed-Carrier Modulation vs Triad

An intriguing yet under-reported finding concerning climate dipole cycles is the symmetry in power spectra observed. This was covered in a post on auto-correlations. The way that this symmetry reveals itself is easily explained by a mirror-folding about one-half some selected carrier frequency, as shown in Fig. 1 below.

Figure 1 : ENSO amplitude spectrum is mirror-folded about 1/2 the annual frequency.
Both the data and model align with their mirrored counterparts, as seen in highlighted box.
Continue reading

Length of Day II

This is a continuation from the previous Length of Day post showing how closely the ENSO forcing aligns to the dLOD forcing.

Ding & Chao apply an AR-z technique as a supplement to Fourier and Max Entropy spectral techniques to isolate the tidal factors in dLOD

The red data points are the spectral values used in the ENSO model fit.

The top panel below is the LTE modulated tidal forcing fitted against the ENSO time series. The lower panel below is the tidal forcing model over a short interval overlaid on the dLOD/dt data.

That’s all there is to it — it’s all geophysical fluid dynamics. Essentially the same tidal forcing impacts both the rotating solid earth and the equatorial ocean, but the ocean shows a lagged nonlinear response as described in Chapter 12 of the book. In contrast, the solid earth shows an apparently direct linear inertial response. Bottom line is that if one doesn’t know how to do the proper GFD, one will never be able to fit ENSO to a known forcing.

Triad Waves

In Chapter 12 of the book, we discuss tropical instability waves (TIW) of the equatorial Pacific as the higher wavenumber (and higher frequency) companion to the lower wavenumber ENSO (El Nino /Southern Oscillation) behavior. Sutherland et al have already published several papers this year that appear to add some valuable insight to the mathematical underpinnings to the fluid-mechanical relationship.

“It is estimated that globally 1 TW of power is transferred from the lunisolar tides to internal tides[1]. The action of the barotropic tide over bottom topography can generate vertically propagating beams near the source. While some fraction of that energy is dissipated in the near field (as observed, for example, near the Hawaiian Ridge [2]), most of the energy becomes manifest as low-mode internal tides in the far field where they may then propagate thousands of kilometers from the source [3]. An outstanding question asks how the energy from these waves ultimately cascades from large to small scale where it may be dissipated, thus closing this branch of the oceanic energy budget. Several possibilities have been explored, including dissipation when the internal tide interacts with rough bottom topography, with the continental slopes and shelves, and with mean flows and eddies (for a recent review, see MacKinnon et al. [4]). It has also been suggested that, away from topography and background flows, internal modes may be dissipated due to nonlinear wave-wave interactions including the case of triadic resonant instability (hereafter TRI), in which a pair of “sibling” waves grow out of the background noise field through resonant interactions with the “parent” wave”

see reference [2]
Continue reading

Australia Bushfire Causes

The Indian Ocean Dipole (IOD) and the El Nino Southern Oscillation (ENSO) are the primary natural climate variability drivers impacting Australia. Contrast that to AGW as the man-made driver. These two categories of natural and man-made causes form the basis of the bushfire attribution discussion, yet the naturally occurring dipoles are not well understood. Chapter 12 of the book describes a model for ENSO; and even though IOD has similarities to ENSO in terms of its dynamics (a CC of around 0.3) the fractional impact of the two indices is ultimately responsible for whether a temperature extreme will occur in a region such as Australia (not to mention other indices such as MJO and SAM).  

Continue reading

The MJO

In Chapter 12 of the book, we presented a math model for the equatorial Pacific ocean dipole known as ENSO (El Nino /Southern Oscillation).  We argued that the higher wavenumber (×15 of the fundamental) characteristic of ENSO was related to the behavior known as Tropical Instability Waves (TIW). Taken together, the fundamental and TIW components provide enough detail to model ENSO at the monthly level. However if we drill deeper, especially with respect to the finer granularity SOI measure of ENSO, there are rather obvious cyclic factors in the 30 to 90 day range that can add even further detail. The remarkable aspect is that these appear to be related to the behavior known as the Madden-Julian Oscillation (MJO), identified originally as a 40-50 day oscillation in zonal wind [1].

Continue reading

AO, PNA, & SAM Models

In Chapter 11, we developed a general formulation based on Laplace’s Tidal Equations (LTE) to aid in the analysis of standing wave climate models, focusing on the ENSO and QBO behaviors in the book.  As a means of cross-validating this formulation, it makes sense to test the LTE model against other climate indices. So far we have extended this to PDO, AMO, NAO, and IOD, and to complete the set, in this post we will evaluate the northern latitude indices comprised of the Arctic Oscillation/Northern Annular Mode (AO/NAM) and the Pacific North America (PNA) pattern, and the southern latitude index referred to as the Southern Annular Mode (SAM). We will first evaluate AO and PNA in comparison to its close relative NAO and then SAM …

Continue reading

The Indian Ocean Dipole

In the book, we modeled the ENSO and QBO climate behaviors. Based on the approach described therein we have since extended this to the PDO, AMO, and NAO indices, with the IOD the focus of this post.

In Chapter 12, we concentrated on the Pacific ocean dipole referred to as ENSO (El Nino/Southern Oscillation).  A dipole that shares some of the characteristics of ENSO is the neighboring Indian Ocean Dipole and its gradient measure the Dipole Mode Index.

The IOD is important because it is correlated with India subcontinent monsoons. It also shows a correlation to ENSO, which is quite apparent by comparing specific peak positions, with a correlation coefficient of 0.2.  This post will describe the differences found via perturbing the ENSO model …

Continue reading