PDO is even, ENSO is odd

As the quality of the tidally-forced ENSO model improves, it’s instructive to evaluate its common-mode mechanism against other oceanic indices. So this is a re-evaluation of the Pacific Decadal Oscillation (PDO), in the context of non-autonomous solutions such as generated via LTE modulation. In particular, in this note we will clearly delineate the subtle distinction that arises when comparing ENSO and PDO. As background, it’s been frequently observed and reported that the PDO shows a resemblance to ENSO (a correlation coefficient between 0.5 and 0.6), but also demonstrates a longer multiyear behavior than the 3-7 year fluctuating period of ENSO, hence the decadal modifier.

ENSO Model
PDO Model — identical forcing to ENSO (cross-validated in upper panel)

A hypothesis based on LTE modulation is that decadal behavior arises from the shallowest modulation mode, and one that corresponds to even symmetry (i.e. cos not sin). So for a model that was originally fit to an ENSO time-series, it is anticipated that the modulation trending to a more even symmetry will reveal less rapid fluctuations — or in other words for an even f(x) = f(-x) symmetry there will be less difference between positive and negative excursions for a well-balanced symmetric input time-series. This should then exaggerate longer term fluctuations, such as in PDO. And for odd f(x) = -f(-x) symmetry it will exaggerate shorter term fluctuations leading to more spikiness, such as in ENSO.

Continue reading

The PDO

In Chapter 12 of the book, the math model behind the equatorial Pacific ocean dipole known as the ENSO (El Nino /Southern Oscillation) was presented.  Largely distinct to that, the climate index referred to as the Pacific Decadal Oscillation (PDO) occurs in the northern Pacific. As with modeling the AMO, understanding the dynamics of the PDO helps cross-validate the LTE theory for dipoles such as ENSO, as reported at the 2018 Fall Meeting of the AGU (poster). Again, if we can apply an identical forcing for PDO as for AMO and ENSO, then we can further cross-validate the LTE model. So by reusing that same forcing for an independent climate index such as PDO, we essentially remove a large number of degrees of freedom from the model and thus defend against claims of over-fitting.

Continue reading

AO, PNA, & SAM Models

In Chapter 11, we developed a general formulation based on Laplace’s Tidal Equations (LTE) to aid in the analysis of standing wave climate models, focusing on the ENSO and QBO behaviors in the book.  As a means of cross-validating this formulation, it makes sense to test the LTE model against other climate indices. So far we have extended this to PDO, AMO, NAO, and IOD, and to complete the set, in this post we will evaluate the northern latitude indices comprised of the Arctic Oscillation/Northern Annular Mode (AO/NAM) and the Pacific North America (PNA) pattern, and the southern latitude index referred to as the Southern Annular Mode (SAM). We will first evaluate AO and PNA in comparison to its close relative NAO and then SAM …

Continue reading

North Atlantic Oscillation

In Chapter 12 of the book, we derived an ENSO standing wave model based on an analytical Laplace’s Tidal Equation formulation. The results of this were so promising that they were also applied successfully to two other similar oceanic dipoles, the Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO), which were reported at last year’s American Geophysical Union (AGU) conference. For that presentation, an initial attempt was made to model the North Atlantic Oscillation (NAO), which is a more rapid cycle, consisting of up to two periods per year, in contrast to the El Nino peaks of the ENSO time-series which occur every 2 to 7 years. Those results were somewhat inconclusive, so are revisited in the following post:

Continue reading