ESP

ESP stands for Earth System Predictability and appears to be an initiative released during the remaining months of the Trump administration.

Introduction
From predictions of individual thunderstorms to projections of long-term global change, knowing the degree to which Earth system phenomena across a range of spatial and temporal scales are practicably predictable is vitally important to society. Past research in Earth System Predictability (ESP) led to profound insights that have benefited society by facilitating improved predictions and projections. However, as there is an increasing effort to accelerate progress (e.g., to improve prediction skill over a wider range of temporal and spatial scales and for a broader set of phenomena), it is increasingly important to understand and characterize predictability opportunities and limits. Improved predictions better inform societal resilience to extreme events (e.g., droughts and floods, heat waves wildfires and coastal inundation) resulting in greater safety and socioeconomic benefits. Such prediction needs are currently only partially met and are likely to grow in the future. Yet, given the complexity of the Earth system, in some cases we still do not have a clear understanding of whether or under which conditions underpinning processes and phenomena are predictable and why. A better understanding of ESP opportunities and limits is important to identify what Federal investments can be made and what policies are most effective to harness inherent Earth system predictability for improved predictions.

They outline these primary goals:

  • Goal 1: Advance foundational understanding and theory for an improved knowledge of Earth system predictability of practical utility.
  • Goal 2: Reduce gaps in the observations-based characterization of conditions, processes, and phenomena crucial for understanding and using Earth system predictability.
  • Goal 3: Accelerate the exploration and effective use of inherent Earth system predictability through advanced modeling.
  • Cross-Cutting Goal 1: Leverage emerging new hardware and software technologies for Earth system predictability R&D.
  • Cross-Cutting Goal 2: Optimize coordination of resources and collaboration among agencies and departments to accelerate progress.
  • Cross-Cutting Goal 3: Expand partnerships across disciplines and with entities external to the Federal Government to accelerate progress.
  • Cross-Cutting Goal 4: Include, inspire, and train the next generation of interdisciplinary scientists who can advance knowledge and use of Earth system predictability.

Essentially the idea is to get it done with whatever means are available, including applying machine learning/artificial intelligence. The problem is that they wish to “train the next generation of interdisciplinary scientists who can advance knowledge and use of Earth system predictability”. Yet, interdisciplinary scientists are not normally employed in climate science and earth science research. How many of these scientists have done materials science, condensed-matter physics, electrical, optics, controlled laboratory experimentation, mechanical, fluid, software engineering, statistics, signal processing, virtual simulations, applied math, AI, quantum and statistical mechanics as prerequisites to beginning study? It can be argued that all the tricks of these trades are required to make headway and to produce the next breakthrough.

https://www.nationalacademies.org/event/09-22-2020/earth-system-predictability-r-d-continuing-the-conversation

ESD Ideas article for review

Get a Copernicus login and comment for peer-review

The simple idea is that tidal forces play a bigger role in geophysical behaviors than previously thought, and thus helping to explain phenomena that have frustrated scientists for decades.

The idea is simple but the non-linear math (see figure above for ENSO) requires cracking to discover the underlying patterns.

The rationale for the ESD Ideas section in the EGU Earth System Dynamics journal is to get discussion going on innovative and novel ideas. So even though this model is worked out comprehensively in Mathematical Geoenergy, it hasn’t gotten much publicity.

Complexity vs Simplicity in Geophysics

In our book Mathematical GeoEnergy, several geophysical processes are modeled — from conventional tides to ENSO. Each model fits the data applying a concise physics-derived algorithm — the key being the algorithm’s conciseness but not necessarily subjective intuitiveness.

I’ve followed Gell-Mann’s work on complexity over the years and so will try applying his qualitative effective complexity approach to characterize the simplicity of the geophysics models described in the book and on this blog.

from Deacon_Information_Complexity_Depth.pdf

Here’s a breakdown from least complex to most complex

Continue reading

Gravitational Pull

In Chapter 12 of the book, we provide an empirical gravitational forcing term that can be applied to the Laplace’s Tidal Equation (LTE) solution for modeling ENSO. The inverse squared law is modified to a cubic law to take into account the differential pull from opposite sides of the earth.

excerpt from Mathematical Geoenergy (Wiley/2018)

The two main terms are the monthly anomalistic (Mm) cycle and the fortnightly tropical/draconic pair (Mf, Mf’ w/ a 18.6 year nodal modulation). Due to the inverse cube gravitational pull found in the denominator of F(t), faster harmonic periods are also created — with the 9-day (Mt) created from the monthly/fortnightly cross-term and the weekly (Mq) from the fortnightly crossed against itself. It’s amazing how few terms are needed to create a canonical fit to a tidally-forced ENSO model.

The recipe for the model is shown in the chart below (click to magnify), following sequentially steps (A) through (G) :

(A) Long-period fortnightly and anomalistic tidal terms as F(t) forcing
(B) The Fourier spectrum of F(t) revealing higher frequency cross terms
(C) An annual impulse modulates the forcing, reinforcing the amplitude
(D) The impulse is integrated producing a lagged quasi-periodic input
(E) Resulting Fourier spectrum is complex due to annual cycle aliasing
(F) Oceanic response is a Laplace’s Tidal Equation (LTE) modulation
(G) Final step is fit the LTE modulation to match the ENSO time-series

The tidal forcing is constrained by the known effects of the lunisolar gravitational torque on the earth’s length-of-day (LOD) variations. An essentially identical set of monthly, fortnightly, 9-day, and weekly terms are required for both a solid-body LOD model fit and a fluid-volume ENSO model fit.

Fitting tidal terms to the dLOD/dt data is only complicated by the aliasing of the annual cycle, making factors such as the weekly 7.095 and 6.83-day cycles difficult to distinguish.

If we apply the same tidal terms as forcing for matching dLOD data, we can use the fit below as a perturbed ENSO tidal forcing. Not a lot of difference here — the weekly harmonics are higher in magnitude.

Modified initial calibration of lunar terms for fitting ENSO

So the only real unknown in this process is guessing the LTE modulation of steps (F) and (G). That’s what differentiates the inertial response of a spinning solid such as the earth’s core and mantle from the response of a rotating liquid volume such as the equatorial Pacific ocean. The former is essentially linear, but the latter is non-linear, making it an infinitely harder problem to solve — as there are infinitely many non-linear transformations one can choose to apply. The only reason that I stumbled across this particular LTE modulation is that it comes directly from a clever solution of Laplace’s tidal equations.

for full derivation see Mathematical Geoenergy (Wiley/2018)