Lunar Eclipse Unremarkable

Neil deGrasse Tyson calls it

NdGT has a point — you do see the earth’s shadow moving across the moon, but once covered, a #lunarEclipse just looks like a duller moon (similar “new moons” are also observed like clockwork and thus take the excitement out of it). Yet the alignment of tidal forces does a number on the Earth’s climate that is totally cryptic and thus overlooked. Perhaps old Dr. Neil would find more interesting tying lunar cycles to climate indices such as ENSO and the Indian Ocean Dipole? It’s all based on geophysical fluid dynamics. Oh, and a bonus — discriminate on the variability of IOD and there’s the underlying AGW trend!

BTW, a key to this IOD model fit is to apply dual annual impulses, one for each monsoon season, summer and winter. Whereas, ENSO only has the spring predictability barrier.

Continue reading

Australia Bushfire Causes

The Indian Ocean Dipole (IOD) and the El Nino Southern Oscillation (ENSO) are the primary natural climate variability drivers impacting Australia. Contrast that to AGW as the man-made driver. These two categories of natural and man-made causes form the basis of the bushfire attribution discussion, yet the naturally occurring dipoles are not well understood. Chapter 12 of the book describes a model for ENSO; and even though IOD has similarities to ENSO in terms of its dynamics (a CC of around 0.3) the fractional impact of the two indices is ultimately responsible for whether a temperature extreme will occur in a region such as Australia (not to mention other indices such as MJO and SAM).  

Continue reading


In Chapter 12 of the book, the math model behind the equatorial Pacific ocean dipole known as the ENSO (El Nino /Southern Oscillation) was presented.  Largely distinct to that, the climate index referred to as the Pacific Decadal Oscillation (PDO) occurs in the northern Pacific. As with modeling the AMO, understanding the dynamics of the PDO helps cross-validate the LTE theory for dipoles such as ENSO, as reported at the 2018 Fall Meeting of the AGU (poster). Again, if we can apply an identical forcing for PDO as for AMO and ENSO, then we can further cross-validate the LTE model. So by reusing that same forcing for an independent climate index such as PDO, we essentially remove a large number of degrees of freedom from the model and thus defend against claims of over-fitting.

Continue reading

AO, PNA, & SAM Models

In Chapter 11, we developed a general formulation based on Laplace’s Tidal Equations (LTE) to aid in the analysis of standing wave climate models, focusing on the ENSO and QBO behaviors in the book.  As a means of cross-validating this formulation, it makes sense to test the LTE model against other climate indices. So far we have extended this to PDO, AMO, NAO, and IOD, and to complete the set, in this post we will evaluate the northern latitude indices comprised of the Arctic Oscillation/Northern Annular Mode (AO/NAM) and the Pacific North America (PNA) pattern, and the southern latitude index referred to as the Southern Annular Mode (SAM). We will first evaluate AO and PNA in comparison to its close relative NAO and then SAM …

Continue reading

The Indian Ocean Dipole

In the book, we modeled the ENSO and QBO climate behaviors. Based on the approach described therein we have since extended this to the PDO, AMO, and NAO indices, with the IOD the focus of this post.

In Chapter 12, we concentrated on the Pacific ocean dipole referred to as ENSO (El Nino/Southern Oscillation).  A dipole that shares some of the characteristics of ENSO is the neighboring Indian Ocean Dipole and its gradient measure the Dipole Mode Index.

The IOD is important because it is correlated with India subcontinent monsoons. It also shows a correlation to ENSO, which is quite apparent by comparing specific peak positions, with a correlation coefficient of 0.2.  This post will describe the differences found via perturbing the ENSO model …

Continue reading