The Indian Ocean Dipole

In the book, we modeled the ENSO and QBO climate behaviors. Based on the approach described therein we have since extended this to the PDO, AMO, and NAO indices, with the IOD the focus of this post.

In Chapter 12, we concentrated on the Pacific ocean dipole referred to as ENSO (El Nino/Southern Oscillation).  A dipole that shares some of the characteristics of ENSO is the neighboring Indian Ocean Dipole and its gradient measure the Dipole Mode Index.

The IOD is important because it is correlated with India subcontinent monsoons. It also shows a correlation to ENSO, which is quite apparent by comparing specific peak positions, with a correlation coefficient of 0.2.  This post will describe the differences found via perturbing the ENSO model …

As a starting rationale for explaining why the correlation isn’t higher, there is likely another standing wave solution that complements the major standing wave that stretches across the equatorial Pacific. The latter contributes the majority of ENSO but only a portion of IOD, so the mystery standing wave is what generates the busier cyclic behavior of IOD.

As with the other oceanic indices, the IOD model generates a similar tidal forcing to ENSO, with R^2>0.95.

Figure 1: The modeled tidal forcing is essentially equal for ENSO and IOD, with the pair-wise correlation shown in the inset. Click to enlarge.

What differs from the ENSO model is the Laplace’s Tidal Equation (LTE) modulation — the IOD consists of a LTE background similar to ENSO, but also a faster modulation that is 3 to 4 that of the background. This can be seen in Fig 2 below.

Figure 2: The IOD LTE modulation is shown in red, with the ENSO LTE shown as the light blue. Click to enlarge.

The LTE modulation is applied to the tidal forcing during the model fitting process. The fit over the entire time span is good, with the Fourier spectrum in the lower panel of Fig 3 below.

Figure 3 : The model to data comparison for the IOD time-series data (DMI). The lower panel is the amplitude spectrum comparison. Click to enlarge.

Each of ENSO, PDO, AMO [1], and now IOD have a nearly identical set of fundamental forced tidal cycles but distinct standing mode modulations. The QBO is the only completely atmospheric behavior, and it has a distinct tidal forcing (mainly draconic as opposed to tropical for the oceanic indices). The NAO model has the semiannual forcing of QBO but the same tidal forcing as ENSO, PDO, AMO, and IOD.

[1] “Ephemeris calibration of Laplace’s tidal equation model for ENSO“, 2018 AGU Fall Meeting. Note: PDO, AMO, and NAO models were evaluated and compared to ENSO but this was too late for inclusion in the book

6 thoughts on “The Indian Ocean Dipole

  1. Pingback: AO, PNA, & SAM Models | GeoEnergy Math

  2. Improved predictability of the Indian Ocean Dipole using seasonally modulated ENSO forcing forecasts

    “seasonally modulated ENSO forcing has generally higher skill in predicting the IOD than CFSv2 and SINTEX”

    Of course, since ENSO and IOD have the same tidal forcing. The only complexity is in determining the dipole-specifc standing-wave configuration via the LTE factor.


  3. Pingback: The AMO | GeoEnergy Math

  4. Pingback: The PDO | GeoEnergy Math

  5. Pingback: Australia Bushfire Causes | GeoEnergy Math

  6. Pingback: EGU 2020 Notes | GeoEnergy Math

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s