Atmospheric Science

I don’t immediately trust the research published by highly cited atmospheric scientists. By my count many of them seem more keen on presenting their personal views rather than advancing the field. Off the top of my head, Richard Lindzen, Murry Salby, Roy Spencer, Tim Dunkerton, Roger Pielke, Cliff Mass, Judith Curry are all highly cited but come across as political and/or religious zealots. One guy on the list, Dunkerton, is also a racist, who happened to make the Washington Post twice : “Physicist ousted from research post after sending offensive tweet to Hispanic meteorologist” and “Atmospheric scientist loses honor, membership over ethics violation“. Awful stuff and he hasn’t stopped spouting off on Twitter.

Granted that Dunkerton says dumb stuff on Twitter but his highly cited research is also off-base. That’s IMO only because recent papers by others in the field of atmospheric science do continue to cite his ideas as primary, if not authoritative. For example, from a recently published paper “The Gravity Wave Activity during Two Recent QBO Disruptions Revealed by U.S. High-Resolution Radiosonde Data”, citations 1 & 12 both refer to Dunkerton, and specifically to his belief that the QBO period is a property of the atmospheric medium itself

Straight-forward to debunk this Dunkerton theory since the length of the cycle directly above the QBO layer is semi-annual and thus not a property of the medium but of the semi-annual nodal forcing frequency. If we make the obvious connection to the other nodal forcing — that of the moon — then we find the QBO period is fixed to 28 months. I have been highlighting this connection to the authors of new QBO papers under community review, often with some subsequent feedback provided such as here: https://doi.org/10.5194/acp-2022-792-CC1 . Though not visible yet in the comments, I received some personal correspondence that showed that the authors under peer-review are taking the idea seriously and attempting to duplicate the calculations. They seem to be methodical in their approach, asking for clarification and further instructions where they couldn’t follow the formulation. They know about the GitHub software, so hopefully that will be of some help.

In contrast, Dunkerton also knows about my approach but responds in an inscrutable (if not condescending) way. Makes you wonder if scientists such as Dunkerton and Lindzen are bitter and taking out their frustrations via the media. Based on their doggedness, they may in fact be intentionally trying to impede progress in climate science by taking contrarian stances. In my experience, the top scientists in other research disciplines don’t act this way. YMMV

Limits of Predictability?

A decade-old research article on modeling equatorial waves includes this introductory passage:

“Nonlinear aspects plays a major role in the understanding of fluid flows. The distinctive fact that in nonlinear problems cause and effect are not proportional opens up the possibility that a small variation in an input quantity causes a considerable change in the response of the system. Often this type of complication causes nonlinear problems to elude exact treatment. “

 https://doi.org/10.1029/2012JC007879

From my experience if it is relatively easy to generate a fit to data via a nonlinear model then it also may be easy to diverge from the fit with a small structural perturbation, or to come up with an alternative fit with a different set of parameters. This makes it difficult to establish an iron-clad cross-validation.

This doesn’t mean we don’t keep trying. Applying the dLOD calibration approach to an applied forcing, we can model ENSO via the NINO34 climate index across the available data range (in YELLOW) in the figure below (parameters here)

The lower right box is a modulo-2π reduction of the tidal forcing as an input to the sinusoidal LTE modulation, using the decline rate (per month) as the divisor. Why this works so well per month in contrast to per year (where an annual cycle would make sense) is not clear. It is also fascinating in that this is a form of amplitude aliasing analogous to the frequency aliasing that also applies a modulo-2π folding reduction to the tidal periods less than the Nyquist monthly sampling criteria. There may be a time-amplitude duality or Lagrangian particle-relabeling in operation that has at its central core the trivial solutions of Navier-Stokes or Euler differential equations when all segments of forcing are flat or have a linear slope. Trivial in the sense that when a forcing is flat or has a 1st-order slope, the 2nd derivatives due to divergence in the differential equations vanish (quasi-static). This means that only the discontinuities, which occur concurrently with the annual ENSO predictability barrier, need to be treated carefully (the modulo-2π folding could be a topological Berry phase jump?). Yet, if these transitions are enhanced by metastable interface instabilities as during thermocline turn-over then the differential equation conditions could be transiently relaxed via a vanishing density difference. Much happens during a turn-over, but it doesn’t last long, perhaps indicating a geometric phase. MV Berry also discusses phase changes in the context of amphidromic tidal singularities here.

Suffice to say that the topological properties of reduced dimension volumes and at interfaces remain mysterious. The main takeaway is that a working NINO34-fitted ENSO model is produced, and if not here then somewhere else a machine-learning algorithm will discover it.

The key next step is to apply the same tidal forcing to an AMO model, taking care not to change the tidal factors enough to produce a highly sensitive nonlinear response in the LTE model. So we retain an excluded interval from training (in YELLOW below) and only adjust the LTE parameters for the region surrounding this zone during the fitting process (parameters here).

The cross-validation agreement is breathtakingly good in the excluded (out-of-band) training interval. There is zero cross-correlation between the NINO34 and AMO time-series to begin with so that this is likely revealing the true emergent characteristics of a tidally forced mechanism.

As usual all the introductory work is covered in Mathematical Geoenergy


A community peer-review contributed to a recent QBO article is here and PDF here. The same question applies to QBO as ENSO or AMO: is it possible to predict future behavior? Is the QBO model less sensitive to input since the nonlinear aspect is weaker?

Myth: El Nino/La Nina transitions caused by wind

This 2-D heat map, from Jialin Lin’s research group at The Ohio State University, shows the eastward propagation of the ocean subsurface wave leading to switch from La Niña to El Niño.

The above is from an informative OSU press release from last year titled Solving climate’s toughest questions, one challenge at a time. The following quotes are from that page, bold emphasis mine.

Jialin Lin, associate professor of geography, has spent the last two decades tackling those challenges, and in the past two years, he’s had breakthroughs in answering two of forecasting’s most pernicious questions: predicting the shift between El Niño and La Niña and predicting which hurricanes will rapidly intensify.

Now, he’s turning his attention to creating more accurate models predicting global warming and its impacts, leading an international team of 40 climate experts to create a new book identifying the highest-priority research questions for the next 30-50 years.

… still to be published

Lin set out to create a model that could accurately identify ENSO shifts by testing — and subsequently ruling out — all the theories and possibilities earlier researchers had proposed. Then, Lin realized current models only considered surface temperatures, and he decided to dive deeper.

He downloaded 140 years of deep-ocean temperature data, analyzed them and made a breakthrough discovery.

“After 20 years of research, I finally found that the shift was caused by an ocean wave 100 to 200 meters down in the deep ocean,” Lin said, whose research was published in a Nature journal. “The propagation of this wave from the western Pacific to the eastern Pacific generates the switch from La Niña to El Niño.”

The wave repeatedly appeared two years before an El Niño event developed, but Lin went one step further to explain what generated the wave and discovered it was caused by the moon’s tidal gravitational force.

“The tidal force is even easier to predict,” Lin said. “That will widen the possibility for an even longer lead of prediction. Now you can predict not only for two years before, but 10 years before.”

Essentially, the idea is that these subsurface waves can in no way be caused by surface wind as the latter only are observed later (likely as an after-effect of the sub-surface thermocline nearing the surface and thus modifying the atmospheric pressure gradient). This counters the long-standing belief that ENSO transitions occur as a result of prevailing wind shifts.

The other part of the article concerns correlating hurricane intensification is also interesting.

p.s. It’s all tides : Climatic Drivers of Extreme Sea Level Events Along the
Coastline of Western Australia

“Wobbling” Moon trending on Twitter

Twitter trending topic

This NASA press release has received mainstream news attention.

The 18.6 year nodal cycle will generate higher tides that will exaggerate sea-level rise due to climate change.

Yahoo news item:

https://news.yahoo.com/lunar-orbit-apos-wobble-apos-173042717.html

So this is more-or-less a known behavior, but hopefully it raises awareness to the other work relating lunar forcing to ENSO, QBO, and the Chandler wobble.

Cited paper

Thompson, P.R., Widlansky, M.J., Hamlington, B.D. et al. Rapid increases and extreme months in projections of United States high-tide flooding. Nat. Clim. Chang. 11, 584–590 (2021). https://doi.org/10.1038/s41558-021-01077-8

Review: Modeling of ocean equatorial currents in the phase of El Niño and La Niña

https://www.sciencedirect.com/science/article/abs/pii/S037702652100018X#!

The equatorial zone acts as a waveguide. As highlights they list the following bullet-points, taking advantage that the Coriolis effect at the equator vanishes or cancels.

This is a critical assertion, since — as shown in Mathematical Geoenergy –the Chandler wobble (a nutational oscillation) is forced by tides, then transitively so is the El Nino. So when the authors state the consequence is of both nutation and a gravity influence, it is actually the gravity influence of the moon and sun (and slightly Jupiter) that is the root cause.

The article has several equations that claim analytical solutions, but the generated PDF format has apparently not rendered the markup correctly. Many “+” signs are missing from equations. I have seen this issue before when I have tried to generate PDF pages from a markup doc, and assume that is what is happening. Assume the hard-copy version is OK so may have to go to the library to retrieve it, or perhaps ask the authors for a hard-copy.

main author:

Sergey А. Arsen’yev

Dept. of Earth and Planetary Physics of Schmidt’s Institute of the Earth’s Physics, Russian Academy of Sciences, 10 Bolshaya Gruzinskaya, Moscow, 123995, Russia

Arsy7@mail.ru

Filtering of Climate Data

One of the frustrating aspects of climatology as a science is in the cavalier treatment of data that is often shown, and in particular through the potential loss of information through filtering. A group of scientists at NASA JPL (Perigaud et al) and elsewhere have pointed out how constraining it is to remove what are considered errors (or nuisance parameters) in time-series by assuming that they relate to known tidal or seasonal factors and so can be safely filtered out and ignored. The problem is that this is only appropriate IF those factors relate to an independent process and don’t also cause non-linear interactions with the rest of the data. So if a model predicts both a linear component and non-linear component, it’s not helpful to eliminate portions of the data that can help distinguish the two.

As an example, this extends to the pre-mature filtering of annual data. If you dig enough you will find that NINO3.4 data is filtered to remove the annual data, and that the filtering is over-zealous in that it removes all annual harmonics as well. Worse yet, the weighting of these harmonics changes over time, which means that they are removing other parts of the spectrum not related to the annual signal. Found in an “ensostuff” subdirectory on the NOAA.gov site:

Continue reading

Lemming/Fox Dynamics not Lotka-Volterra

Appendix E of the book contains information on compartmental models, of which resource depletion models, contagion growth models, drug delivery models, and population growth models belong to.

undefinedOne compartmental population growth model, that specified by the Lotka-Volterra-type predator-prey equations, can be manipulated to match a cyclic wildlife population in a fashion approximating that of observations. The cyclic variation is typically explained as a nonlinear resonance period arising from the competition between the predators and their prey. However, a more realistic model may take into account seasonal and climate variations that control populations directly. The following is a recent paper by wildlife ecologist H. L. Archibald who has long been working on the thesis that seasonal/tidal cycles play a role (one paper that he wrote on the topic dates back to 1977! ).

Continue reading

Stratospheric Sudden Warming

Chapter 11 of the book describes a model for the QBO of stratospheric equatorial winds. The stratified layers of the atmosphere reveal different dependencies on the external forcing depending on the altitude, see Fig 1.

Figure 1 : At high altitudes, only the sun’s annual cycle impacts the stratospheric as a semi-annual oscillation (SAO). Below that the addition of the lunar nodal cycle forces the QBO. The earth itself shows a clear wobble with the lunar cycle interacting with the annual.

Well above these layers are the mesosphere, thermosphere, and ionosphere. These are studied mainly in terms of space physics instead of climate but they do show tidal interactions with behaviors such as the equatorial electrojet [1].

The behaviors known as stratospheric sudden warmings (SSW) are perhaps a link between the lower atmospheric behaviors of equatorial QBO and/or polar vortex and the much higher atmospheric behavior comprising the electrojet. Papers such as [1,2] indicate that lunar tidal effects are showing up in the SSW and that is enhancing characteristics of the electrojet. See Fig 2.

Figure 2 : During SSW events, a strong modulation of period ~14.5 days emerges, close to the lunar fortnightly period as seen in these spectrograms. Taken from ref [2] and see quote below for more info.

“Wavelet spectra of foEs during two SSW events exhibit noticeable enhanced 14.5‐day modulation, which resembles the lunar semimonthly period. In addition, simultaneous wind measurements by meteor radar also show enhancement of 14.5‐day periodic oscillation after SSW onset.”

Tang et al [2]

So the SSW plays an important role in ionospheric variations, and the lunar tidal effects emerge as the higher atmospheric density of a SSW upwelling becomes more sensitive to lunar tidal forcing. That may be related to how the QBO also shows a dependence on lunar tidal forcing due to its higher density.

References

  1. Siddiqui, T. A. Relationship between lunar tidal enhancements in the equatorial electrojet and stratospheric wind anomalies during stratospheric sudden warmings. (2020). Originally presented at AGU 2018 Fall Meeting
  2. Tang, Q., Zhou, C., Liu, Y. & Chen, G. Response of Sporadic E Layer to Sudden Stratospheric Warming Events Observed at Low and Middle Latitude. Journal of Geophysical Research: Space Physics e2019JA027283 (2020).

Lunisolar Forcing of the Chandler Wobble

In Chapter 13 of the book, we have a description of the mechanism forcing the Chandler Wobble in the Earth’s rotation. Even though there is not yet a research consensus on the mechanism, the prescribed lunisolar forcing seemed plausible enough that we included a detailed analysis in the text.  Recently we have found a recent reference to a supporting argument to our conjecture, which is presented below …

Continue reading

AO

The Arctic Oscillation (AO) dipole has behavior that is correlated to the North Atlantic Oscillation (NAO) dipole.   We can see this in two ways. First, and most straight-forwardly, the correlation coefficient between the AO and NAO time-series is above 0.6.

Secondly, we can use the model of the NAO from the last post and refit the parameters to the AO data (data also here), but spanning an orthogonal interval. Then we can compare the constituent lunisolar factors for NAO and AO for correlation, and further discover that this also doubles as an effective cross-validation for the underlying LTE model (as the intervals are orthogonal).

Top panel is a model fit for AO between 1900-1950, and below that is a model fit for NAO between 1950-present. The lower pane is the correlation for a common interval (left) and for the constituent lunisolar factors for the orthogonal interval (right)

Only the anomalistic factor shows an imperfect correlation, and that remains quite high.