One of the interesting traits of climate science is the way it gives away obvious clues. This recent paper by Iz
Iz, H Bâki. “The Effect of Regional Sea Level Atmospheric Pressure on Sea Level Variations at Globally Distributed Tide Gauge Stations with Long Records.” Journal of Geodetic Science 8, no. 1 (n.d.): 55–71.

Raw data for NYC station (Iz, H Bâki. “The Effect of Regional Sea Level Atmospheric Pressure on Sea Level Variations at Globally Distributed Tide Gauge Stations with Long Records.” Journal of Geodetic Science 8, no. 1 (n.d.): 55–71.)
and for the transformed data shown in the histogram below, where I believe the waviness in the lines is compensated by fitting to long-period tidal signal factors (such as 18.6 year, 9.3 year periods, etc).
The first temptation is to attribute the pattern to a measurement artifact. These are monthly readings and there are 12 separate discrete values identified so that connection seems causal. The author says
“It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes, which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism.”
“At any fixed location, the sea level record is a function of time, involving periodic components as well as continuous random fluctuations. The periodic motion is mostly due to the gravitational effects of the sun-earth-moon system as well as because of solar radiation upon the atmosphere and the ocean as discussed before. Sometimes the random fluctuations are of meteorological origin and reflect the effect of ’weather’ upon the sea surface but reflect also the inverse barometric effect of atmospheric pressure at sea level.”
“Stations closer to the equator are also exposed to yearly periodic variations but with smaller amplitudes. Large adjusted R2 values show that the models explain most of the variations in atmospheric pressure observed at the sea level at the corresponding stations. For those stations closer to the equator, the amplitudes of the annual and semiannual changes are considerably smaller and overwhelmed by random excursions. Stations in Europe experience similar regional variations because of their proximities to each other”