PDO is even, ENSO is odd

As the quality of the tidally-forced ENSO model improves, it’s instructive to evaluate its common-mode mechanism against other oceanic indices. So this is a re-evaluation of the Pacific Decadal Oscillation (PDO), in the context of non-autonomous solutions such as generated via LTE modulation. In particular, in this note we will clearly delineate the subtle distinction that arises when comparing ENSO and PDO. As background, it’s been frequently observed and reported that the PDO shows a resemblance to ENSO (a correlation coefficient between 0.5 and 0.6), but also demonstrates a longer multiyear behavior than the 3-7 year fluctuating period of ENSO, hence the decadal modifier.

ENSO Model
PDO Model — identical forcing to ENSO (cross-validated in upper panel)

A hypothesis based on LTE modulation is that decadal behavior arises from the shallowest modulation mode, and one that corresponds to even symmetry (i.e. cos not sin). So for a model that was originally fit to an ENSO time-series, it is anticipated that the modulation trending to a more even symmetry will reveal less rapid fluctuations — or in other words for an even f(x) = f(-x) symmetry there will be less difference between positive and negative excursions for a well-balanced symmetric input time-series. This should then exaggerate longer term fluctuations, such as in PDO. And for odd f(x) = -f(-x) symmetry it will exaggerate shorter term fluctuations leading to more spikiness, such as in ENSO.

Continue reading