AO

The Arctic Oscillation (AO) dipole has behavior that is correlated to the North Atlantic Oscillation (NAO) dipole.   We can see this in two ways. First, and most straight-forwardly, the correlation coefficient between the AO and NAO time-series is above 0.6.

Secondly, we can use the model of the NAO from the last post and refit the parameters to the AO data (data also here), but spanning an orthogonal interval. Then we can compare the constituent lunisolar factors for NAO and AO for correlation, and further discover that this also doubles as an effective cross-validation for the underlying LTE model (as the intervals are orthogonal).

Top panel is a model fit for AO between 1900-1950, and below that is a model fit for NAO between 1950-present. The lower pane is the correlation for a common interval (left) and for the constituent lunisolar factors for the orthogonal interval (right)

Only the anomalistic factor shows an imperfect correlation, and that remains quite high.

NAO

The challenge of validating the models of climate oscillations such as ENSO and QBO, rests primarily in our inability to perform controlled experiments. Because of this shortcoming, we can either do (1) predictions of future behavior and validate via the wait-and-see process, or (2) creatively apply techniques such as cross-validation on currently available data. The first is a non-starter because it’s obviously pointless to wait decades for validation results to confirm a model, when it’s entirely possible to do something today via the second approach.

There are a variety of ways to perform model cross-validation on measured data.

In its original and conventional formulation, cross-validation works by checking one interval of time-series against another, typically by training on one interval and then validating on an orthogonal interval.

Another way to cross-validate is to compare two sets of time-series data collected on behaviors that are potentially related. For example, in the case of ocean tidal data that can be collected and compared across spatially separated geographic regions, the sea-level-height (SLH) time-series data will not necessarily be correlated, but the underlying lunar and solar forcing factors will be closely aligned give or take a phase factor. This is intuitively understandable since the two locations share a common-mode signal forcing due to the gravitational pull of the moon and sun, with the differences in response due to the geographic location and local spatial topology and boundary conditions. For tides, this is a consensus understanding and tidal prediction algorithms have stood the test of time.

In the previous post, cross-validation on distinct data sets was evaluated assuming common-mode lunisolar forcing. One cross-validation was done between the ENSO time-series and the AMO time-series. Another cross-validation was performed for ENSO against PDO. The underlying common-mode lunisolar forcings were highly correlated as shown in the featured figure.  The LTE spatial wave-number weightings were the primary discriminator for the model fit. This model is described in detail in the book Mathematical GeoEnergy to be published at the end of the year by Wiley.

Another common-mode cross-validation possible is between ENSO and QBO, but in this case it is primarily in the Draconic nodal lunar factor — the cyclic forcing that appears to govern the regular oscillations of QBO.  Below is the Draconic constituent comparison for QBO and the ENSO.

The QBO and ENSO models only show a common-mode correlated response with respect to the Draconic forcing. The Draconic forcing drives the quasi-periodicity of the QBO cycles, as can be seen in the lower right panel, with a small training window.

This cross-correlation technique can be extended to what appears to be an extremely erratic measure, the North Atlantic Oscillation (NAO).

Like the SOI measure for ENSO, the NAO is originally derived from a pressure dipole measured at two separate locations — but in this case north of the equator.  From the high-frequency of the oscillations, a good assumption is that the spatial wavenumber factors are much higher than is required to fit ENSO. And that was the case as evidenced by the figure below.

ENSO vs NAO cross-validation

Both SOI and NAO are noisy time-series with the NAO appearing very noisy, yet the lunisolar constituent forcings are highly synchronized as shown by correlations in the lower pane. In particular, summing the Anomalistic and Solar constituent factors together improves the correlation markedly, which is because each of those has influence on the other via the lunar-solar mutual gravitational attraction. The iterative fitting process adjusts each of the factors independently, yet the net result compensates the counteracting amplitudes so the net common-mode factor is essentially the same for ENSO and NAO (see lower-right correlation labelled Anomalistic+Solar).

Since the NAO has high-frequency components, we can also perform a conventional cross-validation across orthogonal intervals. The validation interval below is for the years between 1960 and 1990, and even though the training intervals were aggressively over-fit, the correlation between the model and data is still visible in those 30 years.

NAO model fit with validation spanning 1960 to 1990

Over the course of time spent modeling ENSO, the effort that went into fitting to NAO was a fraction of the original time. This is largely due to the fact that the temporal lunisolar forcing only needed to be tweaked to match other climate indices, and the iteration over the topological spatial factors quickly converges.

Many more cross-validation techniques are available for NAO, since there are different flavors of NAO indices available corresponding to different Atlantic locations, and spanning back to the 1800’s.

Approximating the ENSO Forcing Potential

From the last post, we tried to estimate the lunar tidal forcing potential from the fitted harmonics of the ENSO model. Two observations resulted from that exercise: (1) the possibility of over-fitting to the expanded Taylor series, and (2) the potential of fitting to the ENSO data directly from the inverse power law.

The Taylor’s series of the forcing potential is a power-law polynomial corresponding to the lunar harmonic terms. The chief characteristic of the polynomial is the alternating sign for each successive power (see here), which has implications for convergence under certain regimes. What happens with the alternating sign is that each of the added harmonics will highly compensate the previous underlying harmonics, giving the impression that pulling one signal out will scramble the fit. This is conceptually no different than eliminating any one term from a sine or cosine Taylor’s series, which are also all compensating with alternating sign.

The specific conditions that we need to be concerned with respect to series convergence is when r (perturbations to the lunar orbit) is a substantial fraction of R (distance from earth to moon) :

F(r) = frac{1}{(R+r)^3}

Because we need to keep those terms for high precision modeling, we also need to be wary of possible over-fitting of these terms — as the solver does not realize that the values for those terms have the constraint that they derive from the original Taylor’s series. It’s not really a problem for conventional tidal analysis, as the signals are so clean, but for the noisy ENSO time-series, this is an issue.

Of course the solution to this predicament is not to do the Taylor series harmonic fitting at all, but leave it in the form of the inverse power law. That makes a lot of sense — and the only reason for not doing this until now is probably due to the inertia of conventional wisdom, in that it wasn’t necessary for tidal analysis where harmonics work adequately.

So this alternate and more fundamental formulation is what we show here.

Continue reading

Interface-Inflection Geophysics

This paper that a couple of people alerted me to is likely one of the most radical research findings that has been published in the climate science field for quite a while:

Topological origin of equatorial waves
Delplace, Pierre, J. B. Marston, and Antoine Venaille. Science (2017): eaan8819.

An earlier version on ARXIV was titled Topological Origin of Geophysical Waves, which is less targeted to the equator.

The scientific press releases are all interesting

  1. Science Magazine: Waves that drive global weather patterns finally explained, thanks to inspiration from bagel-shaped quantum matter
  2. Science Daily: What Earth’s climate system and topological insulators have in common
  3. Physics World: Do topological waves occur in the oceans?

What the science writers make of the research is clearly subjective and filtered through what they understand.

Continue reading

The QBO anomaly of 2016 revisited

Remember the concern over the QBO anomaly/disruption during 2016?

Quite a few papers were written on the topic

  1. Newman, P. A., et al. “The anomalous change in the QBO in 2015–2016.” Geophysical Research Letters 43.16 (2016): 8791-8797.
    Newman, P. A., et al. “The Anomalous Change in the QBO in 2015-16.” AGU Fall Meeting Abstracts. 2016.
  2. Randel, W. J., and M. Park. “Anomalous QBO Behavior in 2016 Observed in Tropical Stratospheric Temperatures and Ozone.” AGU Fall Meeting Abstracts. 2016.
  3. Dunkerton, Timothy J. “The quasi‐biennial oscillation of 2015–2016: Hiccup or death spiral?.” Geophysical Research Letters 43.19 (2016).
  4. Tweedy, O., et al. “Analysis of Trace Gases Response on the Anomalous Change in the QBO in 2015-2016.” AGU Fall Meeting Abstracts. 2016.
  5. Osprey, Scott M., et al. “An unexpected disruption of the atmospheric quasi-biennial oscillation.” Science 353.6306 (2016): 1424-1427.
According to the lunar forcing model of QBO, which was also presented at AGU last year, the peak in acceleration should have occurred at the time pointed to by the BLACK downward arrow in the figure below. This was in April of this year. The GREEN is the QBO 30 hPa acceleration data and the RED is the QBO model.

Note that the training region for the model is highlighted in YELLOW and is in the interval from 1978 to 1990. This was well in the past, yet it was able to pinpoint the sharp peak 27 years later.

The disruption in 2015-2016 shown with shaded black may have been a temporary forcing stimulus.  You can see that it obviously flipped the polarity with respect to the model. This will provoke a transient response in the DiffEq solution, which will then eventually die off.


The bottom-line is that the climate scientists who pointed out the anomaly were correct in that it was indeed a disruption, but this wasn’t necessarily because they understood why it occurred — but only that it didn’t fit a past pattern. It was good observational science, and so the papers were appropriate for publishing.  However, if you look at the QBO model against the data, you will see many similar temporary disruptions in the historical record. So it was definitely not some cataclysmic event as some had suggested. I think most scientists took a less hysterical view and simply pointed out the reversal in stratospheric winds was unusual.

I like to use this next figure as an example of how this may occur (found in the comment from last year). A local hurricane will temporarily impact the tidal displacement via a sea swell. You can see that in the middle of the trace below. On both sides of this spike, the tidal model is still in phase and so the stimulus is indeed transient while the underlying forcing remains invariant. For QBO, instead of a hurricane, the disruption could be caused by a SSW event. It also could be an unaccounted-for lunar forcing pulse not captured in the model. That’s probably worth more research.

As the QBO is still on a 28 month alignment, that means that the external stimulus — as with ENSO, likely the lunar tidal force — is providing the boundary condition synchronization.

Recipe for ENSO model in one tweet

//platform.twitter.com/widgets.js


and for QBO

//platform.twitter.com/widgets.js

The common feature of the two is the application of Laplace’s tidal equation and its closed-form solution.

ENSO+QBO Elevator Pitch

Most papers on climate science take pages and pages of exposition before they try to make any kind of point. The excessive verbiage exists to rationalize their limited understanding of the physics, typically by explaining how complex it all is.

Conversely, think how easy it is to explain sunrise and sunset. From a deterministic point of view [1] and from our understanding of a rotating earth and an illuminating sun, it’s trivial to explain that a sunrise and sunset will happen once each per day. That and perhaps another sentence would be all that would be necessary to write a research paper on the topic …  if it wasn’t already common knowledge. Any padding to this would be unnecessary to the basic understanding. For example, going further and explaining why the earth rotates amounts to answering the wrong question. Thus the topic is essentially an elevator pitch.

If sunset/sunrise is too elementary an example, one could explain ocean tides. This is a bit more advanced because the causal connection is not visible to the eye. Yet all that is needed here is to explain the pull of gravity and the orbital rate of the moon with respect to the earth, and the earth to the sun. A precise correlation between the lunisolar cycles is then applied to verify causality. One could add another paragraph to explain how mixed tidal effects occur, but that should be enough for an expository paper.

We could also be at such a point in our understanding with respect to ENSO and QBO. Most of the past exposition was lengthy because the causal factors could not be easily isolated or were rationalized as random or chaotic. Yet, if we take as a premise that the behavior was governed by the same orbital factors as what governs the ocean tides, we can make quick work of an explanation.

Continue reading

Scaling El Nino

Recently, the rock climber Alex Honnold took a route up El Capitan without ropes.There’s no room to fail at that. I prefer a challenge that one can fail at, and then keep trying.  This is the ascent to conquering El Nino:

The Free-thought Route*

Χ  Base camp:  ENSO (El Nino/Southern Oscillation) is a sloshing behavior, mainly in the thermocline where the effective gravity makes it sensitive to angular momentum changes.
Χ  Faster forcing cycles reinforce against the yearly cycle, creating aliased periods. How?
Χ  Monthly lunar tidal cycles provide the aliased factors: Numbers match up perfectly.
This aliasing also works for QBO, an atmospheric analog of ENSO.
Χ  A biennial meta-stability appears to be active. Cycles reinforce on alternating years.
Χ  The well-known Mathieu modulation used for sloshing simulations also shows a biennial character.
Machine learning experiments help ferret out these patterns.
Χ  The delay differential equation formulation matches up with the biennial Mathieu modulation with a delay of one-year.  That’s the intuitive yearly see-saw that is often suggested to occur.
  The Chandler wobble also shows a tidal forcing tendency, as does clearly the earth’s LOD (length-of-day) variations.
Χ  Integrating the DiffEq model provides a good fit, including long-term coral proxy records
Χ  Solving the Laplace tidal equation via a Sturm-Liouville expression along the equator helps explain details of QBO and ENSO
  Close inspection of sea-level height (SLH) tidal records show evidence of both biennial and ENSO characteristics
Δ Summit: Final validation of the geophysics comparing ENSO forcing against LOD forcing.

Model fits to ENSO using a training interval

The route encountered several dead-ends with no toe-holds or hand-holds along the way (e.g. the slippery biennial phase reversal, the early attempts at applying Mathieu equation). In retrospect many of these excursions were misguided or overly complex, but eventually other observations pointed to the obvious route.

This is a magnification of the fitting contour around the best forcing period values for ENSO. These pair of peak values are each found to be less than a minute apart from the known values of the Draconic cycle (27.2122 days) and Anomalistic cycle (27.5545 days).

The forcing comes directly from the angular momentum variations in the Earth’s rotation. The comparison between what the ENSO model uses and what is measured via monitoring the length-of-day (LOD) is shown below:

 

 

*  This is not the precise route I took, but how I wish it was in hindsight.

The Lunar Geophysical Connection

The conjecture out of NASA JPL is that the moon has an impact on the climate greater than is currently understood:

Claire Perigaud (Caltech/JPL)
and
Has this research gone anywhere?  Looks as if has gone to this spin-off.
According to the current consensus, variability in wind is what contributes to forcing for behaviors such as the El Nino/Southern Oscillation (ENSO).
OK, but what forces the wind? No one can answer that apart from saying wind variability is just a part of the dynamic climate system.  And so we are lead to believe that a wind burst will cause an ENSO and then the ENSO event will create a significant disruptive transient to the climate much larger than the original wind stimulus. And that’s all due to positive feedback of some sort.
I am only paraphrasing the current consensus.
A much more plausible and parsimonious explanation lies with external lunar forcing reinforced by seasonal cycles.

Continue reading

Lindzen doth protest too much

Incredible that Richard Lindzen was quoted as saying this:

Richard Lindzen, the Alfred P. Sloan Professor of Meteorology at MIT and a member of the National Academy of Sciences who has long questioned climate change orthodoxy, is skeptical that a sunnier outlook is upon us.

“I actually doubt that,” he said. Even if some of the roughly $2.5 billion in taxpayer dollars currently spent on climate research across 13 different federal agencies now shifts to scientists less invested in the calamitous narrative, Lindzen believes groupthink has so corrupted the field that funding should be sharply curtailed rather than redirected.

“They should probably cut the funding by 80 to 90 percent until the field cleans up,” he said. “Climate science has been set back two generations, and they have destroyed its intellectual foundations.”

Consider the psychological projection aspect of what Lindzen is asserting. The particularly galling part is this:

“Climate science has been set back two generations, and they have destroyed its intellectual foundations.”

It may actually be Lindzen that has set back generations of atmospheric science research with his deeply flawed model of the quasi-biennial oscillation of equatorial stratospheric winds — see my recent QBO presentation for this month’s AGU meeting.   He missed a very simple derivation that he easily could have derived back in the 1960’s, and that could have set a nice “intellectual foundation” for the next 40+ years. Instead he has essentially “corrupted the field” of atmospheric sciences that could have been solved with the right application of Laplace’s tidal equations — equations known since 1776 !

The “groupthink” that Lindzen set in motion on the causes behind QBO is still present in the current research papers, with many scientists trying to explain the main QBO cycle of 28 months via a relationship to an average pressure. See for example this paper I reviewed earlier this year.

To top it all off, he was probably within an eyelash of figuring out the nature of the forcing, given that he actually considered the real physics momentarily:

Alas, all those millions of taxpayer funds that Lindzen presumably received over the years didn’t help, and he has been reduced to whining over what other climate scientists may receive in funding as he enters into retirement.

Methinks it’s usually the case that the one that “doth protest too much” is the guilty party.

Added: here is a weird graphic of Lindzen I found on the cliscep blog. The guy missed the simple while focussing on the complex.

richardlindzen

From climate scientist Dessler

From climate scientist Dessler