Climate Dipoles as crystal-crypto

Climate scientists as a general rule don’t understand crystallography deeply (I do). They also don’t understand cryptography (that, I don’t understand deeply either). Yet, as the last post indicated, knowledge of these two scientific domains is essential to decoding dipoles such as the El Nino Southern Oscillation (ENSO). Crystallography is basically an exercise in signal processing where one analyzes electron & x-ray diffraction patterns to be able to decode structure at the atomic level. It’s mathematical and not for people accustomed to existing outside of real space, as diffraction acts to transform the world of 3-D into a reciprocal space where the dimensions are inverted and common intuition fails.

Cryptography in its common use applies a key to enable a user to decode a scrambled data stream according to the instruction pattern embedded within the key. If diffraction-based crystallography required a complex unknown key to decode from reciprocal space, it would seem hopeless, but that’s exactly what we are dealing with when trying to decipher climate dipole time-series -— we don’t know what the decoding key is. If that’s the case, no wonder climate science has never made any progress in modeling ENSO, as it’s an existentially difficult problem.

The breakthrough is in identifying that an analytical solution to Laplace’s tidal equations (LTE) provides a crystallography+cryptography analog in which we can make some headway. The challenge is in identifying the decoding key (an unknown forcing) that would make the reciprocal-space inversion process (required for LTE demodulation) straightforward.

According to the LTE model, the forcing has to be a combination of tidal factors mixed with a seasonal cycle (stages 1 & 2 in the figure above) that would enable the last stage (Fourier series a la diffraction inversion) to be matched to empirical observations of a climate dipole such as ENSO.

The forcing key used in an ENSO model was described in the last post as a predominately Mm-based lunar tidal factorization as shown below, leading to an excellent match to the NINO34 time series after a minimally-complex LTE modulation is applied.

In diffraction terms, the LTE transform from the forcing time series (upper panel)
to the ENSO intensity (lower panel) produces a wave interference relationship

Critics might say and justifiably so, that this is potentially an over-fit to achieve that good a model-to-data correlation. There are too many degrees of freedom (DOF) in a tidal factorization which would allow a spuriously good fit depending on the computational effort applied (see Reference 1 at the end of this post).

Yet, if the forcing key used in the ENSO model was reused as is in fitting an independent climate dipole, such as the AMO, and this same key required little effort in modeling AMO, then the over-fitting criticism is invalidated. What’s left to perform is finding a distinct low-DOF LTE modulation to match the AMO time-series as shown below.

This is an example of a common-mode cross-validation of an LTE model that I originally suggested in an AGU paper from 2018. Invalidating this kind of analysis is exceedingly difficult as it requires one to show that the erratic cycling of AMO can be randomly created by a few DOF. In fact, a few DOFs of sinusoidal factors to reproduce the dozens of AMO peaks and valleys shown is virtually impossible to achieve. I leave it to others to debunk via an independent analysis.

addendum: LTE modulation comparisons, essentially the wavenumber of the diffraction signal:

(click on links to expand)

This is the forcing power spectrum showing the principal Mm tidal factor term at period 3.9 years, with nearly identical spectral profiles for both ENSO and AMO.


According to the precepts of cryptography, decoding becomes straightforward once one knows the key. Similarly, nature often closely guards its secrets, and until the key is known, for example as with DNA, climate scientists will continue to flounder.

References

  1. Chao, B. F., & Chung, C. H. (2019). On Estimating the Cross Correlation and Least Squares Fit of One Data Set to Another With Time Shift. Earth and Space Science, 6, 1409–1415.  https://doi.org/10.1029/2018EA000548
    For example, two time series with predominant linear trends (very low DOF) can have a very high ρ (positive or negative), which can hardly be construed as an evidence for meaningful physical relationship. Similarly, two smooth time series with merely a few undulations of similar timescale (hence low DOF) can easily have a high apparent ρ just by fortuity especially if a time shift is allowed. On the other hand, two very “erratic” or, say, white time series (hence high DOF) can prove to be significantly correlated even though their apparent ρ value is only moderate. The key parameter of relevance here is the DOF: A relatively high ρ for low DOF may be less significant than a relatively low ρ at high DOF and vice versa.


From the discussion section of a paper: “Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach”

Is this a joke?

Yes, we know what a friggin Venn diagram is:

5 thoughts on “Climate Dipoles as crystal-crypto

  1. I like your line of thought here. I focused more on the cryptology aspect of your hypothesis. Looking forward to learning about the keys you will come up with. I support that climate science will continue to flounder as it remains hyper focused on a singular variable. I also believe this is an Atlas endeavor, as you will find there will be infinite keys.

    Like

  2. Pingback: Sea-Level Height as a proxy for ENSO | GeoEnergy Math

  3. The expanded daily view of the forcing, showing a strong 27.55 day period modulated into what has an 18yr (6yr) Saros cycle, indicating that lunar eclipse alignments of the earth-sun-moon axis are a critical factor in generating the largest possible forcing.

    Like

  4. Mann still believes that the AMO is not oscillating even though he coined the term:

    Like

  5. Pingback: PDO is even, ENSO is odd | GeoEnergy Math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s