Lunar Torque Controls All

Mathematical Geoenergy

The truly massive scale in the motion of fluids and solids on Earth arises from orbital interactions with our spinning planet. The most obvious of these, such as the daily and seasonal cycles, are taken for granted. Others, such as ocean tides, have more complicated mechanisms than the ordinary person realizes (e.g. ask someone to explain why there are 2 tidal cycles per day). There are also less well-known motions, such as the variation in the Earth’s rotation rate of nominally 360° per day, which is called the delta in Length of Day (LOD), and in the slight annual wobble in the Earth’s rotation axis. Nevertheless, each one of these is technically well-characterized and models of the motion include a quantitative mapping to the orbital cycles of the Sun, Moon, and Earth. This is represented in the directed graph below, where the BLUE ovals indicate behaviors that are fundamentally understood and modeled via tables of orbital factors.

The cyan background represents behaviors that have a longitudinal dependence
(rendered by GraphViz
)

However, those ovals highlighted in GRAY are nowhere near being well-understood in spite of being at least empirically well-characterized via years of measurements. Further, what is (IMO) astonishing is the lack of research interest in modeling these massive behaviors as a result of the same orbital mechanisms as that which causes tides, seasons, and the variations in LOD. In fact, everything tagged in the chart is essentially a behavior relating to an inertial response to something. That something, as reported in the Earth sciences literature, is only vaguely described — and never as a tidal or tidal/annual interaction.

I don’t see how it’s possible to overlook such an obvious causal connection. Why would the forcing that causes a massive behavior such as tides suddenly stop having a connection to other related inertial behaviors? The answers I find in the research literature are essentially that “someone looked in the past and found no correlation” [1].

Continue reading