A paper from last week with high press visibility that makes claims to climate1 applicability is titled: Topology shapes dynamics of higher-order networks
The higher-order Topological Kuramoto dynamics, defined in Eq. (1), entails one linear transformation of the signal induced by a boundary operator, a non-linear transformation due to the application of the sine function, concatenated by another linear transformation induced by another boundary operator. These dynamical transformations are also at the basis of simplicial neural architectures, especially when weighted boundary matrices are adopted.
![]()
This may be a significant unifying model as it could resolve the mystery of why neural nets can fit fluid dynamic behaviors effectively without deeper understanding. In concise terms, a weighted sine function acts as a nonlinear mixing term in a NN and serves as the non-linear transformation in the Kuramoto model2.
Continue reading