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Cross-Validation primer

Montesinos Lopez O.A., Montesinos Lopez A., Crossa J. (2022) Overfitting,
Model Tuning, and Evaluation of Prediction Performance. In: Multivariate
Statistical Machine Learning Methods for Genomic Prediction. Springer,
Cham. https://doi.org/10.1007/978-3-030-89010-0 4



https://doi.org/10.1007/978-3-030-89010-0_4
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Appropriate Fit of ENSO

Using Laplace’s Tidal Equation model - see Mathematical Geoenerqy (Wiley, 2018)

* This is a parsimonious fit as it applies 2 primary tidal factors, Mf (13.66 day)+Mm (27.55 day)
« An over-fit training interval reproduces back-fitted values, capturing most El Nino events

LTE analysis model fit based on lunar factors . —Model —ENSO NINO3.4
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https://geoenergymath.com/2018/11/02/mathematical-geoenergy-update/

Tidal Forcing

 Input forcing is an annual impulse modulated by the tidal amplitude at that time
 The Mf and Mm amplitudes are supplemented by other known tidal amplitudes
» As shown below the effect of adding all factors is slight

, Lunisolar tidal forcing CMEMm all
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Tidal Factor Breakdown

At the daily level, the Mf+Mm factors produce the well-known 4.42 year perigean envelope

The secondary factors combine to produce an 18 year Saros cycle and 6 year sub-cycle
* Primary
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» Secondary (note the amplitude reduced to ~1% of primary level)
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Laplace’s Tidal Equations derivation

Starting point Ending point

» The primitive equations « After applying ansatz (see Chap 12)

12.2.5. Part 1: Deriving a Closed-Form Solution
to Laplace’s Tidal Equations

For a fluid sheet of average thickness D, the vertical
tidal elevation £, and the horizontal velocity components

After properly applying the chain rule, this reduces the
equation to a function of £(r) and ¢(r), along with a
constant 4. The 4 subsumes the wavenumber SW(s)
portion, so there will be multiple solutions for the various
standing waves, which will be used in fitting the model to
the data:

u and v (in the latitude ¢ and longitude 4 directions), the p 1 o¢'(r) o (12.12)
following is the set of Laplace’s tidal equations. The idea §(1]+8_(p o Op ‘
ot at

1s that along the equator, that is, for ¢ at zero, we can
reduce these to something much simpler:

X _y(20sin(p))+ ;:_’(g,; +U)=0, (121

So, if we fix ¢(7) to a periodic function with a long-
term mean of zero

i=N
9 _'S kyen cos (axt) (12.13)
ot i=1

to describe the perturbed tractive latitudinal displace-
ment terms near the equator, then the solution is the fol-
lowing potentially highly nonlinear result (depending on

Ay \ A N
o + u(zﬂsin ((P]) + l ,,L(gf,: + U] =0, the strength of the inner terms):
ot a g

where Q is the angular frequency of the planet’s rotation,
g 1s the planet’s gravitational acceleration at the mean
ocean surface, a is the planetary radius, and U is the
external gravitational tidal forcing potential.

C(f)=Siﬂ(ﬂfk,-sin(mir]+a]] (12.14)
i=l

where 4 is an aggregate of the constants of the differential
equation and 6, represents the fixed phase offset necessary
for aligning on a seasonal peak. This approximation of a

Fit standing
wave modes
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Higher-Order terms?

» SOl duplicates NINO34 but has finer structure
* If these are higher index standing wave modes then it may be possible to fit as well

4

LTE analysis model fit based on lunar factors —Model  —SO0I (inverted amplitude)
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Path Forward

« ENSO model is simple and parsimonious, but nonlinear terms make it challenging to fit
 Invitation is open to apply other cross-validation approaches such as described here:

Ephemeris calibration of Laplace's tidal equation model for ENSO AGU 2018 Fall Meeting

-
Several approaches used to validate the analysis ™ = QCL
1. Temporal-domain cross-validation o
2. Frequency-domain cross-validation :f.,:‘:;.' o e ~ =~
3. Multiple time-scale validation (monthly and daily) ey =

4. Common-mode validation (other indices QBO, PDO, AMO, NAO)
5. Geophysics validation (Ephemeris, Length-of-Day, Chandler wobble)
6. Out-of-band coral proxy validation

» Pointless to have to wait years to validate true forecasts, so this is what we must test, test, -


https://www.essoar.org/doi/abs/10.1002/essoar.10500568.1
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