Mathematical GeoEnergy, update

The book is now available from these sellers: 1119434297[1]

Amazon: Mathematical Geoenergy: Discovery, Depletion and Renewal

Barnes&Noble: Mathematical Geoenergy: Discovery, Depletion and Renewal

Publisher – Wiley/AGU: Mathematical Geoenergy: Discovery, Depletion and Renewal

Cite as: Pukite, P., Coyne, D., & Challou, D. (2019). Mathematical Geoenergy: Discovery, Depletion, and Renewal (Vol. 241). John Wiley & Sons.

Google Books link

Outline and Chapter overviews at Wiley

Errata Page 

Table of Contents  

Front Matter (pp: i-viii)

CHAPTER 1 Introduction to Mathematical Geoenergy (pp: 1-3)
CHAPTER 2 Stochastic Modeling (pp: 5-9)

Part I : Depletion

CHAPTER 3 Fossil Fuel Depletion Modeling (pp: 11-16)
CHAPTER 4 Discovering Oil Reserves (pp: 17-39)
CHAPTER 5 Analysis of Production and the Shock Model (pp: 41-60)
CHAPTER 6 Characterizing Discovery, Production, Reserve Growth (61-84)
CHAPTER 7 Comparing the Oil Production Model to Data (pp: 85-107)
CHAPTER 8 Alternative Characterization and Models (pp: 109-130)
CHAPTER 9 Models for Future Production (pp: 131-153)

Part II : Renewal

CHAPTER 10 Energy Transition: Applying Probabilities & Physics (157-166)
CHAPTER 11 Wind Energy (pp: 167-178)
CHAPTER 12 Wave Energy (pp: 179-203)
CHAPTER 13 Geophysical Energy (Pages: 205-211)
CHAPTER 14 Thermal Energy: Diffusion and Heat Content (pp: 213-224)
CHAPTER 15 Latent Energy: Hydrological Cycle (pp: 225-231)
CHAPTER 16 Gravitational Potential Energy: Terrain & Topography (233-266)
CHAPTER 17 Solar Energy: Thermodynamic Balance (pp: 267-272)
CHAPTER 18 Geoenergy Conversion (pp: 273-289)
CHAPTER 19 Dissipative Energy: Resilience, Durability, & Reliability (291-303)
CHAPTER 20 Dispersed Energy: Particulates and Transport in the Environment (pp: 305-318)
CHAPTER 21 Electromagnetic Energy: Noise and Uncertainty (pp: 319-325)

 EPILOGUE (pp: 327)

 Appendix A: The Effect and Role of Feedback (pp: 329-330)
 Appendix B: Using Pipes and Flow to Compute Convolution (pp: 331-332)
 Appendix C: Dispersion Analogies (pp: 333-339)
 Appendix D: Regional Oil Discovery and Production Profiles (pp: 341-342)
 Appendix E: Compartment Models (pp: 343-344)
 Appendix F: US Reserve Growth (pp: 345-347)
 Appendix G: Table of Acronyms (pp: 349)

 INDEX (pp: 351-365)First Page


Altimetric

 

Presentations at the American Geophysical Union (AGU) meeting in Washington D.C.

10 thoughts on “Mathematical GeoEnergy, update

  1. Pingback: Mathematical Geoenergy in a nutshell | GeoEnergy Math

  2. Pingback: Gravitational Pull | GeoEnergy Math

  3. Pingback: Complexity vs Simplicity in Geophysics | GeoEnergy Math

  4. The research category is topological considerations of Laplace’s Tidal Equations (a simplification of Navier-Stokes) applied to the equatorial themocline — the following is an evolutionary understanding via presentations and publications over the last 6 years

    “Nonlinear long-period tidal forcing with application to ENSO, QBO, and Chandler wobble”, EGU General Assembly Conference Abstracts, 2021, EGU21-10515
    ui.adsabs.harvard.edu/abs/2021EGUGA..2310515P/abstract

    “Nonlinear Differential Equations with External Forcing”,
    ICLR 2020 Workshop DeepDiffEq https://openreview.net/forum?id=XqOseg0L9Q

    “Mathematical geoenergy: discovery, depletion, and renewal”
    John Wiley & Sons, 2019, chapter 12: “Wave Energy” https://agupubs.onlinelibrary.wiley.com/doi/10.1002/9781119434351.ch12

    “Ephemeris calibration of Laplace’s tidal equation model for ENSO”
    AGU Fall Meeting 2018, https://www.essoar.org/doi/abs/10.1002/essoar.10500568.1

    “Biennial-Aligned Lunisolar-Forcing of ENSO: Implications for Simplified Climate Models”
    AGU Fall Meeting 2017, https://www.essoar.org/doi/abs/10.1002/essoar.b1c62a3df907a1fa.b18572c23dc245c9.1

    “Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO” , AGU Fall Meeting Abstracts 2016, OS11B-04, ui.adsabs.harvard.edu/abs/2016AGUFMOS11B..04P/abstract

    Like

  5. Cheers, another slightly more informed question.
    Is there a relation between lightning and the green house effect? Specifically high energy solar vs. low energy solar radiation. Compton Scattering from solar radiation in the upper to middle troposphere tending to cause more lightning. Just another weird one like spiral gravity “waves” emitting from the sun because it is di core, LOL.

    Like

  6. Pingback: What happened to simple models? | GeoEnergy Math

  7. Pingback: Dante GPT-4 | GeoEnergy Math

  8. Pingback: Canonical Cross-Validation | GeoEnergy Math

Leave a comment